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Summary. The effect of self fertilization on the distribution of genetic types in a 
population can be represented algebraically by a linear transformation. In this 
paper the relationship of the transformation to the genetic algebra governing 
the population is investigated. In particular, the problems of multiple alleles, 
polyploidy and linked loci are studied. 
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1. Introduction 

The use of the theory of genetic algebra has so far been confined to random mating 
populations. In many treatments of population genetics the next mating system 
to be considered is self fertilization, which occurs mainly among plants. A further 
elaboration is to suppose that in each generation a fixed proportion 0 of the 
population undergoes random mating while the remaining proportion 1 - O is 
self fertilized. This is again relevant to plants where both self pollination and cross 
pollination take place. Mathematically, self fertilization is equivalent to complete 
assortative mating by genotype, and hence the mixed scheme also provides a model 
for the important phenomenon of partial assortative mating by genotype. 

This raises the problem of how far it is possible to extend the theory of genetic 
algebras to cover the mixture of random mating and selfing. 

In a wide variety of cases which has been characterized by Schafer [8], genetic 
algebras of non-selective systems can be put into a simple canonical form. It is 
shown in Section 2 that this is still possible for the genetic algebra of the mixed 
mating system provided that a certain criterion of compatibility, which is specified 
algebraically, is satisfied. 

The fundamental difficulty of population genetics arises from the fact that the 
transformation from gene or genotype frequencies in one generation to those in 
the next is quadratic and not therefore immediately amenable to matrix methods. 
One of the most important results of genetic algebra is to establish that if the mode 
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of inheritance leads to a Schafer algebra the quadratic transformation can be 
represented by a linear transformation on a higher dimensional space, whose 
matrix can be calculated by a systematic procedure. The minimal polynomial of 
this matrix is the characteristic equation of  the recurrence relation between the 
vectors of genotype frequencies in successive generations. 

The basic result of this paper is that when selfing is compatible with random mating 
in the sense defined, the linearization procedure can also be carried out for the 
algebra representing mixed random mating and selfing. 

In Section 3 the theory developed in Section 2 is illustrated by applying it to three 
frequently studied systems of inheritance: multiple alleles at a single locus, poly- 
ploidy and linked loci. It  is shown that for any multi-allelic or polyploid system, 
selfing is compatible with random mating and the application to tetraploidy is 
calculated in detail. The situation is not so simple when linkage is involved. In 
general selfing is not compatible, but it is in the special situation where independent 
loci are considered and where all the coupling-repulsion combinations involving 
the same allele set are identified. The two locus case is calculated in detail. 

Let 9.1 be a commutative Schafer genetic algebra with baric function fl, and let 
a = (a0 . . . . .  a~) be a heavy basis, namely one for which fl(ao) . . . . .  fl(a~) = 1. 
Let its multiplication table relative to a be 

atas = ~ ~'ts~a~. 

The vector space underlying 9.1 will be called ~3 and a typical element in it will be 
denoted by x = Y. x~a~. Although it has not been done in previous work on the 
subject, it seems convenient in view of the non-linear aspects of the problem, to 
maintain a notational distinction between ~3 and ~3", the space of row vectors of 
coefficients (Xo . . . . .  x~). Its basis consisting of elements (0 . . . . .  1 . . . . .  0) will be 
called a*. 

The operation 'multiplication by a s' on ~3 is represented on ~3" by right multiplica- 
tion by the matrix 1-' s = (~'~jk), where i, k = 0 . . . . .  n label the rows and columns. 
Consider the linear operator S defined on ~ by 

Xlyttkak. (1) 

The dual, or contragredient operator S* acting on ~3" has the matrix G = (y,~) 
when referred to a*. It can be expressed as 

G = ~. P,F, (2) 

where P~ is the square matrix with 1 in its ith diagonal position and 0 everywhere 
else. 

The operator S will be called the selfing of ~ with respect to a. I f  9.1 corresponds to 
an actual genetic system in which a~ stands for a population composed entirely of 
genetic type A~, the basis a is called a natural basis and elements for which x~ >/0, 

x~ -- 1 are called population elements. In this case, the action of S on a popula- 
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tion element represents the replacement of the population by its filial generation 
under self fertilization. The selfing with respect to the natural basis will be called 
the natural selfing of 9.1. 

2. An Algebra for Mixed Selling and Random Mating 

Suppose now that a new product is defined on ~ by 

x o y = Oxy + (I - O)[3(y)xS. (3) 

The corresponding algebra 9.[ ~ is clearly baric, with the same function/3 as 9g, but 
it is non-commutative. When x, y are population elements the right hand side of 
(3) represents a filial generation of which a proportion 0 is formed from the 
offspring of random mating between members of x and members of  y, and a 
proportion 1 - 0 by self fertilization of members of x. 

In a Schafer genetic algebra it is possible to find a canonical basis c, with a = cT' 
such that if the multiplication table with respect to the new basis is 

c,c~ = ~ y,s~ck (4) 

then 

y 0 ~ = y j o k = 0  f o r k < j  

ytjk = 0 for k ~< max ( i , j )  when i , j  > 0. (5) 

I t  follows that if Aj = T -  ll~jT denotes the right multiplication matrix with respect 
to the new basis, of the element aj in the original basis, then (i) Aj is upper tri- 
angular f o r j  = 0 . . . . .  n and (ii) the diagonals of the Aj are identical. The order of 
the components of a is immaterial, therefore T may without loss of  generality be 
multiplied by an arbitrary permutation matrix. Consider the standard factorization 
T = N M  with N lower and M upper triangular matrices. Then a = cM'N ' .  In 
view of  (5), cM' is also a canonical basis. Thus given any arbitrary basis the 
canonical basis can always be chosen in such a way that the matrix T involved is 
lower triangular. 

Genetic algebras in general are discussed in [3] and the characteristic properties of 
Schafer algebras in [11, 5, 10]. 

When referred to the basis c* the selfing operator has the matrix 

L = T - 1 G T  = ~ T-xP,  TA, = ~ Q,A,, (6) 

where Q~ = (ujd~k), uj, being the (j, i)th element in T-1.  I f  T is lower triangular, 
Q, has non-zero elements only in the rectangle where rows i to n meet columns 
0 t o  i. 

In 9g ~ the operator 'multiplication on the right by aj '  is represented by right 
multiplication of ~3" by the matrix 

r0j = 0r j  + (1 - O)G. (7) 

When referred to the canonical basis the matrix takes the form 

Ae, = T - l r o , T  = 0A, + (1 - O)L. (8) 
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Equations (7) and (8) exhibit the multiplication constants of  9.10 in the natural and 
canonical bases respectively. 

I f L  is upper triangular the set of matrices A0~ will be upper triangular with identical 
diagonals. Thus, extending the definition in a straightforward way to the non- 
commutative case, 910 can be called a right Schafer genetic algebra when this is true. 
In a Schafer algebra the subspaces ~"~ spanned by (c~ . . . . .  c,) are ideals. The 
requirement that L be upper triangular is equivalent to the requirement that the 
~co are operator ideals in respect of the selfing operator. When this condition 
holds the selfing with respect to a will be said to be compatible with the canonical 
basis c. When there is no danger of confusion the statement that in a certain genetic 
algebra, selfing is compatible, will mean that a canonical basis c can be found with 
respect to which the natural selfing is compatible. 

When T is lower triangular the effect of S on the elements of c is 

c~S = ajutj S = a~u~j 
J=O 

= ,,, c~c,hd,, = ~ ~_, c~c, ~ u,,t,,t,, 
j : O  s f f i 0 l f f i 0  s : O  I : 0  / : m a x s , /  

: Y. Y. (9) 
s = 0  1 = 0  

t where or(i; s, l) = ~JfmaxCs,1) utstsstJl �9 

In view of (5), S will be compatible with c if a(i; s, I) = 0 whenever max (s, l) < i. 
An alternative criterion, obtainable from (6) is that 

l , ,=  ~ ~ t,~ua~,~,=O w h e n j < i .  
S = 0  1 = 0  

In an algebra representing random mating the evolutionary operator E is defined 
by xE = x 2. When x is a population element it represents the replacement of the 
population by its offspring under random mating. In a similar way on setting 
x = y in (3) an operator Eo may be defined by 

xEo = x o x = OxE + (1 - O)fl(x)xS. (10) 

It  represents a generation of evolution under a mixture of random mating and 
selfing. 

In  a Schafer algebra the operator E* corresponding to E, acting on ~3", can be 
linearized [8, 1] by representing the points of ~3" on a surface in a higher dimen- 
sional space ~3". The quadratic operator E* on ~3" then corresponds to a linear 
operator E* on ~*. The representation is obtained by augmenting the coefficient 
vector (Y0, . . . .  y,)  with respect to the canonical basis by a finite set of monomials 
in its components. A fundamental result in the theory is that the augmented set of 
components can be so ordered that the matrix of/~* is also upper triangular. 
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When selfing is compatible with the algebra, the operator E0 may be linearized, 
since the construction of 4 "  and/~* (or E*) does not depend on commutativity. 

3. Single Locus Algebras 

The proofs of Theorems 1 and 2 have been designed to illustrate respectively the 
direct study of the ideal structure and the analysis of the matrix of  S* with respect 
to c*. 

Theorem 1. In the zygotic algebra for  a single diploid locus with multiple alleles, the 
natural selfing is compatible. 

Proof. The natural basis comprises the set {a,j}, i ~< j,  where a,j symbolizes the 
genotype A,Aj. Its multiplication table is a,jak~ = �88 + a,, + ajk + a,) .  A 
canonical basis with lower triangular T is provided by Coo = aoo, co, = aoo - ao,, 
cij = aoo - a0~ - a0j + a,j, and the multiplication table in terms of this basis is 
C~o = coo, CooCo, = �89 all other products zero. The effect of  S is 

C o o s  = a o o S  = aoo = Coo 

co,S = (aoo - ao,)S = a~oo - a~, 

= � 8 8  - � 89  - - a .  = Co, - � 8 8  

c, jS  = (aoo - ao, - aoj + a,j)S = a~o - a], - a~j + a~j 

= � 8 9  - a o ,  - a o j  + a , , )  = � 8 9  

The elements c,j are ordered lexicographically to provide a canonical basis, and it 
may be seen directly that selfing is compatible with the ideal structure. 

Theorem 2. In the zygotic algebra for  polyploidy, with chromosome or chromatid 
segregation or a mixture o f  the two, the natural selfing is compatible. 

Proof. In [7] it is shown that the transformation 

c, = ~ o ( - l y  aj 

provides a canonical basis for all the relevant gametic algebras, where aj represents 
the gamete AJB ~-j. This induces the transformation 

~ + !  i al) (10) 

in the duplicate. It is however possible consistently to identify with each other all 
natural basis elements for which k + / t a k e s  a fixed value, say u, and also all canoni- 
cal basis elements for which i + j = t say. It is biologically natural and mathe- 
matically advantageous to make this identification, setting (ak, a,) = bk+~ = bu and 
(c,, cj) = d,+j = dr. Then (10) becomes 

(:I dt = ~.. ( - 1 ) "  b,,. (11) 
u = O  
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The matrix T = ( h j )  then has t u =  (-1)J(~) and it is lower triangular and self 

reciprocal. The coefficient ~ in (9) is then 

o(i;s, u) = ( - 1 )  ~+" ~ '  ( - 1 ) '  J J 
t f u  U 5 

|-- 'U 

= ( s ; "  ( : )  , ~ o ( - 1 " ( i  j u) (u+j) ( ' ,  

s! \ u /  I~=~" 

Now z Cs) is a polynominal of degree s and hence this expression is zero when 
i - u > s, that iswhen s + u < i. The condition required for compatibility is only 
that o(i; s, u) = 0 for max (s, u) < i. 

The linearization of Eo will be exemplified for the case of the tetraploid algebra 
with chromosome segregation studied in [7]. The multiplication table for the 
gametic algebra is, with n = 2 

a , a , = ~ ( ( i + j ) [ 2 n - i - - J ~ / [ 2 n ~  a 
s \ : : - . s  ] / ~ n I J ' "  

With respect to the canonical basis given above it is 

c~ = Co, CoCl = �89 CoC2 = c~ = ~c~. 

Thus for the zygotic algebra, after setting (c,, cj) = d, + ~ the multiplication table is 

d~ = do, dodl = �89 dod2 = ~d2, d~ = �88 

dxd2 = iJ~da, d~ = 3~-~d~, other products zero. 

The matrices of the selfing operator acting on ~3", referred to the natural basis b* 
dual to (b0 . . . . .  b~) and the canonical basis d* dual to (do, . . . ,  d~) respectively are 

1 11~ ~ ~ 
a =  ~ �89 ~ §  L = r - l a r =  o o ~ - ~  

o � 8 8 1 8 9 1 8 8  o o �89 - 

o o o l  o o o ~ j  

The details of the linearization procedure are computed according to the method 
used in [8]. 

The effect of E* on the canonical coordinates of a population element, for which 
Yo = 1 is obtained from the identity 

(do § = do + 
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The results may be summed up as follows, where Yo is taken to be 1 : 

E* S* 
I I I 

Yl Yl Yl 
y2 ~y2 + �88 ~y2 - �88 
Ya ~SYlY2 �89 - ~rYa 

The effect of  E* = OE* + (1 - O)S* can be obtained from the above table. It  
can be seen from the first column that in order to linearize E*, a further set of  
coordinates corresponding to y~, y~, y~, Y2Yx, Y2Y~, Yg must be introduced. The 
lexicographic ordering of  the augmented set is based on (i) ascending order of the 
greatest suffix occurring in the monomical, (ii) ascending powers of  the letter 
suffixed by it, (iii) the same criteria disregarding the letter already considered. The 
augmented vector is thus 

2 2 (1, yl, y~, y~, Yl, Y=, YaYl, Y~Yl, Yz, Ya, Y,). 

It  transpires that no further coordinates need to be added to achieve the lineariza- 

tion of  E*. Its matrix takes the form ( / ~ )  where I is a 5 x 5 identity matrix, 

0 a 6 • 5 zero matrix and 

0 0 0 0 0 0 

- � 8 8  0 0 0 0 0 

0 - � 8 8  - 0) 0 -~ (1  - 0) 0 0 

0 O -�88 - 0) -�89 - O) 0 0 

0 0 O 0 ~ 0 0 

~ - � 89  0 0 0 --}(1 - O) a-ff~(~ 1 - O) 

0 { - � 8 9  0 - ~-~ - �89 - O) ~0 0 

o o ~ - � 8 9  20(~-�89 o o 

o o o (-}-�89 o § 

0 0 0 0 �89 - O) {(1 - O) 

0 0 0 0 0 ~(1 - 0) 

This matrix retains the phenomenon pervasive in genetic algebras that the algebraic 
multiplicities of its eigenvalues are not geometric. Its minimal polynomial, which 
is thus the characteristic equation of the recurrence relation between vectors of 
genotype proportions in successive generations is 

(z - 1)(z - ~ + �89 - ~ r~  + ~e - ~e=)(z - �89 + �89 - ~ + ~o) = o. 

It is a characteristic of  a Schafer genetic algebra that the Lie algebra generated by 
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the matrices F0 . . . . .  F ,  is soluble. I f  S is compatible then the Lie algebra generated 
by the F, and G will still be soluble. The increase in the degree of  solubility provides 
an indication of the incongruity between random mating and selfing. In the case 
studied above it is increased from 2 to 3. 

4. Several Loci 

When linked loci are involved selfing is not in general compatible, but some limited 
results can be obtained. 

I f  k loci segregate independently the gametic algebra is the direct product of those 
corresponding to the individual loci [9]. The zygotic algebra 81 is then obtained 
by commutative duplication. Consider now the direct product 82 of the duplicates 
of the algebras for the separate loci. Contrary to part o fThe0rem 5 of [4], 81 ~ 82. 
Indeed with two alleles per locus 81, 82 have dimensions 2k-1(2 k + 1), 3 X respec- 
tively. In the discussion of  zygotic algebras in [8] 81 and 82 are erroneously taken 
to be identical. This question is also discussed in [6]. 

The natural basis elements of the gametic algebra can be written a(il . . . . .  ix) 
where each ij is 0 or 1, coding the alleles at locus j. The basis elements of 81 can be 
written a(il  . . . . .  ix;j1 . . . . .  ix)  where the order of the sets separated by a semicolon 
is immaterial. Those of 82 can be written a(il ,  Jl  ; . . .  ; ix, ix)  where the order within 
each of the pairs is immaterial. The correspondence 

a(il . . . . .  i x ; j l ,  . . . , A )  -+ a(il ,  j l ;  . . . ; ix, A )  (12) 

establishes a homomorphism of 81 onto 82. This follows from the fact that when 
the loci segregate independently, t he  gametic output of all the inverse images of 
a(il,  j l ; .  �9 �9 ; ix, ix)  is the same, and that this output specifies the product. It can be 
seen that in this case 82 represents the zygotic system when genotypes are classified 
according to the allelic content at each locus without distinguishing between the 
various possible partitions among the chromosomes. 

Theorem 3. In  the zygot ic  algebra f o r  k independent ly  segregat ing loci with no dis- 
tinction be tween the par t i t ions  o f  genes be tween chromosomes ,  the natural  selfing is 
compat ible .  

Proof .  The property that selfing is compatible is inherited by direct products, as is 
clear on considering a lexicographic ordering of the elements of the canonical 
basis. Compatibility at one locus is established for the diploid zygotic algebra by 
either Theorem 1 or Theorem 2, and the result follows. 

When there is non-trivial linkage the mapping (12) is no longer a homomorphism. 
Consider two loci with alleles A, B and ~, fl respectively and recombination fraction 
r. Put 1 - r = s. The gametes Aa,  Aft, Ba, Bfl will be denoted by al, a2, aa, a4, the 
zygotes by a,j, the canonical basis elements of the gametic algebra by Co = ao, 
c~ = a0 - al, c2 = a0 - a2, ca = ao - al -- a2 + aa and the duplicate canonical 
basis elements by c,j, i ~< j. 
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A typical populat ion element referred to the canonical  basis is ~ y~jc,j with Yoo = 1. 
The  following table gives the effect on the vector  (Yoo . . . . .  Ysa) o f  the operations 
corresponding to  multiplication by Coo = ass, o f  E* and of  S*. 

R E* S* 

1 1 1 1 

Yol �89 Yol Y o l  

Yo2 �89 Yo2 Yo2 

Yoa ~(SYos + ryl~) Syos + ry12 syoa + ry12 

Yll 0 �88 �89 - �89 

Yi2 0 �89 ~(Yia + Yo2) 

y l s  o �89 + rys~) ~ ( y ~  - Syo~ - ryes) 

Y22 0 �88 �89 -- �89 

Y2a 0 �89 + ry12) �89 -- Syoa -- rye2) 

Ysa 0 ~(Syos + ryla) k �89 a + s2)yaa -- �88 -- r 2 -- s2)(yla + Y2a) 

+ �88 + s2Yos) 

The compatibil i ty o f  the selfing depends on the possibility o f  t ransforming the R~ 
and  the matrix o f  S* simultaneously into upper  tr iangular form by a similarity 
t ransformat ion.  I t  can be seen f rom the above table that  the subspace (Yoa, Y12) is 
invariant  for  Roo and S*. Their restrictions to this subspace have matrices respec- 
tively 

These matrices cannot  simultaneously be put  into triangular fo rm by  a similarity 
t ransformat ion  unless s = r = �89 Thus selfing is not  compatible. This is in con- 
formi ty  with the result in [2]. 
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